Mechanism of cell-cycle control: ligating the ligase.
نویسندگان
چکیده
The F-box protein SKP2 promotes the G1-S transition by targeting key regulators for proteasomal degradation via its capacity to function as the specificity factor for the SKP1 Cullin F-box SCF(SKP2) ubiquitin ligase. SKP2 is a labile protein, the levels of which oscillate in a cell cycle-dependent manner. SKP2 accumulation is often deregulated in cancer, which indicates that temporal control of SKP2 is essential for normal cell proliferation. Two new studies now suggest that SKP2 accumulation is determined by a second ubiquitin ligase, the anaphase-promoting complex or cyclosome, APC/C(CDH1). These studies highlight a novel mechanism wherein mitotic machinery communicates with proteins that regulate G1 phase progression.
منابع مشابه
Lif1 SUMOylation and its role in non-homologous end-joining
Non-homologous end-joining (NHEJ) repairs DNA double-strand breaks by tethering and ligating the two DNA ends. The mechanisms regulating NHEJ efficiency and interplay between its components are not fully understood. Here, we identify and characterize the SUMOylation of budding yeast Lif1 protein, which is required for the ligation step in NHEJ. We show that Lif1 SUMOylation occurs throughout th...
متن کاملCabazitaxel antiproliferative mechanism of action in U87MG human glioblastoma cells: a promising cell-cycle phase-specific radiosensitizer
Introduction: One mechanism of cell cycle manipulation and mitotic catastrophe is arrest at G2/M phase of cell cycle. Cabazitaxel, a mitotic inhibitor agent, is a second-generation semisynthetic taxane. An expected anti-neoplastic effect of Cabazitaxel is cell cycle perturbation and alteration of microtubule dynamics. In contrast to other taxane compounds, Cabazitaxel is a poo...
متن کاملEnhancement of DNA ligase I level by gemcitabine in human cancer cells.
PURPOSE DNA ligase I is an essential enzyme for completing DNA replication and DNA repair by ligating Okazaki fragments and by joining single-strand breaks formed either directly by DNA-damaging agents or indirectly by DNA repair enzymes, respectively. In this study, we examined whether the DNA ligase I level could be modulated in human tumor cell lines by treatment with gemcitabine (2', 2'-dif...
متن کاملPara-nonylphenol Toxicity Induces Oxidative Stress and Arrests the Cell Cycle in Mesenchymal Stem Cells of Bone Marrow
Background: The mechanism of para-nonylphenol (PNP) reducing the proliferation and differentiation of bone marrow mesenchymal stem cells (MSCs) is not known. The present study was designed to investigate the mechanism. Methods: MSCs were extracted under sterile condition from Wistar rat and cultured in DMEM, containing 15 % FBS and penicillin/streptomycin until the 3rd passage, then cells we...
متن کاملNIPA Defines an SCF-Type Mammalian E3 Ligase that Regulates Mitotic Entry
The regulated oscillation of protein expression is an essential mechanism of cell cycle control. The SCF class of E3 ubiquitin ligases is involved in this process by targeting cell cycle regulatory proteins for degradation by the proteasome, with the F-box subunit of the SCF specifically recruiting a given substrate to the SCF core. Here we identify NIPA (nuclear interaction partner of ALK) as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in biochemical sciences
دوره 29 9 شماره
صفحات -
تاریخ انتشار 2004